APOD logo

Astronomy Picture of the Day
Index - Solar System: Jupiter


| Today's APOD | Title Search | Text Search |

Editor's choices for the most educational Astronomy Pictures of the Day about Jupiter:

Thumbnail image.  Click to load APOD for this date. APOD: 1999 July 18 - Jupiter from Voyager
Explanation: This picture of the planet Jupiter was taken by the Voyager 1 spacecraft as it passed the planet in 1979. Jupiter, a gas giant planet with no solid surface, is the largest planet in the Solar System and is made mostly of the hydrogen and helium. Clearly visible in the above photo is the Great Red Spot, a giant, hurricane-like storm system that rotates with the clouds of Jupiter. It is so large three complete Earths could fit inside it. Astronomers have recorded this giant storm on Jupiter for over 300 years.

Thumbnail image.  Click to load APOD for this date. APOD: 1999 August 6 - Hubble Tracks Jupiter's Great Red Spot
Explanation: It is a hurricane twice the size of the Earth. It has been raging at least as long as telescopes could see it, and shows no signs of slowing. It is Jupiter's Great Red Spot, the largest swirling storm system in the Solar System. Like most astronomical phenomena, the Great Red Spot was neither predicted nor immediately understood after its discovery. Still today, details of how and why the Great Red Spot changes its shape, size, and color remain mysterious. A better understanding of the weather on Jupiter may help contribute to the better understanding of weather here on Earth. In the pictures on the left, the Hubble Space Telescope has captured Jupiter's Great Red Spot in various states over the past several years.

Thumbnail image.  Click to load APOD for this date. APOD: 1997 October 30 - 3-D View Of Jupiter's Clouds
Explanation: Every day is a cloudy day on Jupiter, the Solar System's reigning gas giant. This 3-dimensional visualization presents a simplified model view from between Jovian cloud decks based on imaging and spectral data recorded by the Galileo spacecraft. The separation between the cloud layers and the height variations have been exaggerated. The upper cloud layer is haze a few tens of miles thick. Heights in the lower cloud layers have been color coded; light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. Streaks in the lower layer suggestively lead to a dark blue area, a relatively clear, dry region similar to the site where Galileo's atmospheric probe made the first entry into a gas giant planet's atmosphere on December 7th, 1995.


| Archive | Index | Search | Calendar | Glossary | Education | About APOD |

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (USRA)
NASA Technical Rep.: Jay Norris. Specific rights apply.
A service of: LHEA at NASA/ GSFC
& Michigan Tech. U.